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Abstract—We present Ouroboros Crypsinous, the first formally
analyzed privacy-preserving proof-of-stake blockchain protocol.
To model its security we give a thorough treatment of private
ledgers in the (G)UC setting that might be of independent inter-
est. To prove our protocol secure against adaptive attacks, we in-
troduce a new coin evolution technique relying on SNARKs, and
key-private forward-secure encryption. The latter primitive—and
the associated construction—can be of independent interest. We
stress that existing approaches to private blockchain, such as the
proof-of-work-based Zerocash are analyzed only against static
corruptions.

I. INTRODUCTION

A significant limitation of traditional blockchain protocols,
such as Bitcoin, is the fact that the transaction ledger is a
public resource and thus significant information about the way
the transaction issuers operate may be leaked to an adversary.
This consideration was acknowledged early on and Bitcoin
itself [29] includes a number of measures to mitigate transac-
tion privacy loss. Namely users produce a new pseudonymous
address for each payment received and addresses from the
same wallet are supposedly indistinguishable from addresses
from different wallets. Still, the information available in the
blockchain itself is susceptible to analysis and it has been
demonstrated early on that significant information can be
extracted by clustering the Bitcoin transaction “graph”, see
e.g., [31], [25].

This state of affairs motivated the development of privacy
enhancing and privacy preserving techniques for distributed
ledgers. First, methods such as CoinJoin [24] and CoinShuf-
fle [32] were proposed as mechanisms to reduce the effec-
tiveness of de-anonymization techniques based on tracing and
clustering. Subsequently redesigned cryptocurrencies were put
forth that attempted to introduce stronger privacy enhancing
techniques by design in the distributed ledger protocol. These
included Zerocoin [27], Zerocash [4], and Cryptonote [33].
We note that despite their enhanced privacy characteristics,
deploying these protocols in practice, as e.g., in the Monero
or Zcash cryptocurrencies, may introduce some leakage (even
if we exclude leakage on the network layer, which is an
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issue orthogonal to what these protocols study including the
present work). This can be exploited as demonstrated in
recent works [23], [28], [20]. Still, protocols like Zerocash
have theoretically strong, provable privacy guarantees and
can, in principle, provide the foundations for a highly private
transaction ledger. Interestingly though, invariably all the
above privacy enhancing techniques primarily focused on the
transaction processing layer of the distributed ledger leaving
the consensus back-end mechanism largely the same.

Concurrently with these developments however, another line
of research works in blockchain design focused on resolving
fundamental issues with the energy consumption requirements
of the underlying proof-of-work (PoW) mechanism of Bitcoin.
In particular, this led to a sequence of works in proof-of-
stake (PoS) blockchain protocols that include Algorand [26],
Ouroboros [21], Ouroboros Praos [13], Ouroboros Genesis [1],
Sleepy-Consensus [30], and Snow White [5]. PoS blockchain
protocols alleviate the requirement to perform proof-of-work
by solving computationally hard puzzles. Instead, they refer
to the stake that each participant possesses as reported in the
blockchain and, through cryptographic means, elect the next
participant to extend the transaction ledger (who is commonly
referred as the next leader). PoS protocols have been touted
as the next important advance in real world distributed ledger
systems and a number of well-known cryptocurrencies are in
the process of incorporating them into their deployed systems
including Ethereum with the Casper protocol [34] and Cardano
with Ouroboros [11].

The above state of affairs raises an important open question:
is it possible to build a PoS-based privacy enhanced distributed
ledger? This is the main motivation of this work where we
tackle this problem and answer the question in the affirmative.

Our results. We propose a new formal model for a PoS-
based privacy-preserving distributed ledger in the universal
composition (UC) setting, [8], and a new protocol that re-
alizes it, Ouroboros Crypsinous.1 Our protocol analysis with
respect to the basic properties of consistency and liveness

1The word “Crypsinous” is Greek and refers to a person who is mindful
of their privacy. We thank Konstantinos Mitropoulos for suggesting it to us.
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is inspired by Ouroboros Genesis, [1], a recent (non-private)
PoS blockchain protocol formally analyzed in the UC setting.
Our protocol provides the first PoS-based privacy-enhanced
blockchain protocol. Moreover, for the first time our protocol
achieves simulation-based security that is even universally
composable, i.e., it ensures that privacy (as well as consis-
tency and liveness) are preserved independently of any other
protocols running concurrently with our ledger implementation
and withstands adaptive attacks. We note that previous work
on provable privacy enhanced ledgers (in the proof-of-work
setting), notably [4] is analysed in the static corruption setting
using game-based definitions for security.

It is worth noting that PoS and transaction privacy is,
seemingly, a contradiction in terms: issuing a block by proof-
of-stake fundamentally leaks information about the issuer
and the state of the ledger. We circumvent the contradiction
by designing a new privacy-enhancing PoS operation that,
roughly speaking, extends the SNARK machinery of “trans-
action pouring” in Zerocash to a setting where coins evolve
without loosing their value, enabling on the way a proof of
stake-eligibility that does not leak any additional information.

The design has several subtleties since a critical consid-
eration in the PoS setting is tolerating adaptive corruptions:
this ensures that even if the adversary can corrupt parties in
the course of the protocol execution in an adaptive manner,
it does not gain any non-negligible advantage by e.g., re-
issuing past PoS blocks. In non-private PoS protocols such
as Algorand [26] and Ouroboros Genesis [1] this is captured
by employing forward secure signatures. In the context of our
protocol however, a more sophisticated combination of key-
private forward-secure encryption—a new encryption primitive
which we formally define and realize—and an evolving coins
mechanism is required to achieve the same level of security.
Intuitively, the reason is that we need to ensure that past coins
received, provide no significant advantage to the adversary
when it corrupts an active stakeholder. We note that the naı̈ve
approach of simply paying oneself with a new coin does not
work here, as the same coin should be able to be elected
multiple times in a sequence of PoS invocations without
leaving any evidence in the ledger.

Our private ledger formalization is also of independent
interest since it captures for the first time the concept of a
privacy enhanced transaction ledger in the UC-setting which
is generally applicable to both the PoW and PoS settings.
Interestingly, we observe that the latter case requires a slightly
expanded adversarial interface that allows a sampling of the
stakeholder distribution per slot. (A similar sampling can
be also observed in Bitcoin, but since miner privacy is not
considered a prime requirement this was never formalized.)
Adversarial sampling captures the fact that in the PoS setting
traffic analysis is possible based merely on the frequency one
entity issues a PoS block. Our formal model ensures that
this is the only privacy leakage that will be incurred during
the execution of the protocol. A secondary formalization
contribution is the concept of UC key-private forward-secure
encryption which, even though the two relevant properties

were studied independently, a UC functionality capturing both
has never appeared until our work.

We note that our work is concurrent, and independent, of
another paper on privacy-preserving proof-of-stake by Ganesh
et al. [16]. This work focuses on constructing a generic,
privacy-preserving leadership election, given a list of com-
mitments to each party’s stake. Our work by contrast focuses
on ensuring the proof of stake leadership election can run
with a provably secure, privacy-preserving transaction scheme.
Notably, Zerocash cannot immediately be used with the system
of [16], as it does not maintain a list of stake commitments –
indeed, such a list would appear to reveal more about the shift
in funds than Zerocash does, such as how long an account has
seen no changes.

II. PROTOCOL INTUITION

To begin with, we give a high-level sketch of the Ouroboros
Crypsinous protocol in this Section, to aid in understanding
the more formal break-down of the protocol in Section VI,
and to introduce core concepts. We will first sketch the design
of two protocols we are building on – Ouroboros Genesis [1],
and Zerocash [4]. We will discuss how these can be combined,
and the issues that arise through this combination. Finally, we
will sketch how we have resolved these issues.

A. The Foundations of Genesis and Zerocash

Ouroboros Genesis [1], divides time into discrete slots. At
protocol start, parties are assigned initial stake in the system.
Typically, only the relative amount of such stake is considered,
i.e. how much each party holds out of the total stake. By
protocol-external means, the distribution of this stake may shift
over time, e.g. by users trading it amongst each other. Each
slot, users have a probability proportional2 to their relative
stake to be “elected” as a leader of the slot. In practice,
this relies on a pseudo-random value being below a user-
specific target. Such leaders may then create a new block,
and sign it with a proof of leadership eligibility. In order to
prevent so-called “grinding attacks”, in which parties attempt
the leadership election arbitrarily often with different accounts,
transferring themselves the funds, Genesis divides time further
into epochs. In each epoch, the distribution of stake considered
for leadership is fixed, and the pseudo-random values used to
determine it can only be predicted once the epoch starts.

Zerocash [4] achieves complete transactional privacy in a
distributed ledger setting, through the use of non-interactive
zero-knowledge (NIZK) proofs. It represents monetary value
through coins, which can be created, and spent once. Crucially,
it prevents double-spends, and ensures value is preserved,
while at the same time preventing the creation and spending
of a coin from being linked. A transfer allows spending two
coins, and creating two new coins of the same combined value.
This closely mirrors the simplest form of Bitcoin transactions.
Each party holds a secret key used to spend coins. This secret
key is simply a random string, and its corresponding public

2We note that although it is not technically linear, this is a close approxi-
mation.
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key is a hash of the secret key. When creating a new coin, it
is created for a public key. Specifically, a nonce is randomly
selected for the new coin, and the transaction creating it
commits to the coins public key, nonce, and value. All such
created commitments are kept in a protocol-wide Merkle tree.
To spend a coin, a party makes a zero-knowledge proof of
two things: First, the protocol-wide Merkle tree contains a
commitment to it, and second, the spender knows the preimage
of the public key. This by itself would allow double spends, so
Zerocash reveals a coins serial number, which is defined as a
PRF of the secret key and the coin’s nonce. The transfer finally
proves in zero-knowledge that the transaction is zero-sum.

B. The Core Protocol

The core principle of Ouroboros Crypsinous is combining
the strengths of both the Ouroboros Genesis and Zerocash
protocols. In particular, we note that while Ouroboros Genesis
assumes the distribution of stake to be public, this fact is only
used in verifying that leaders of a slot met the appropriate
target. To remove this intrinsic leakage, we have parties
hold Zerocash-style coins, with each coin being separately
considered for leadership. As in Ouroboros Genesis, each coin
is eligible to be a leader if a pseudorandom value meets
some target. Instead of revealing the coins value, however,
in Crypsinous parties produce a NIZK proof of this, as well
as proving that the respective coin is unspent. This also
forces us to explicitly model the transaction system by which
stake is allowed to shift – as the stake distribution is no
longer simply supplied to every party by the environment,
it is necessary to make explicit how it is derived. For this
reason, the core Crypsinous protocol includes a Zerocash-like
transaction system.

C. Freezing Stake in Zero Knowledge

The security argument of Ouroboros Genesis relies on
parties not being able to manipulate whether or not they won
a leadership election. Specifically, it assumes the distribution
of stakeholders to be fixed before the randomness for the same
epoch is decided. Likewise, the set of coins that are eligible
for a slot in the leadership election is fixed in Ouroboros
Crypsinous. The protocol maintains this frozen set of coins,
Clead, separately to the set of coins usable for spending, Cspend.
In practice, as coins are anonymously as sets of commitments
and serial numbers, and as any reuse of a serial number would
lead to some privacy leakage, we represent them through two
sets of commitments, Clead and Cspend, and one set of serial
numbers, S. In creating the leadership proofs, a coins serial
number is revealed. As it may later be spent, this would lead
to some privacy leakage. To mitigate this, we instead evolve
the coin in the leadership transaction. This new, evolved coin
can then be spent, and used in further leadership proofs, the
latter being possible as it is derived deterministically from the
former coin, which does not allow influencing the probability
of it being elected in the remainder of the epoch. We note that
as this design inherently destroys the old coin, it is important

that even leadership transactions of different branches of the
chain are imported and validated.

D. Adaptive Corruptions

As Ouroboros Genesis is secure in the adaptive corruption
model, it seems natural that privacy results should be possible
in the same model. The construction described so far, is not di-
rectly secure against adaptive corruptions. An adversary could,
after corrupting a party, attempt to create leadership proofs of
past slots with the newly corrupted party. Further, we note that
– in the UC framework – a non-committing encryption would
be needed for the ciphertexts in the Zerocash style transactions,
as with a committing encryption, the simulator would be
unable to produce ciphertexts that stand up to inspection after
corruption.

We solve the former issue, by adding a cheap key-erasure
scheme into the NIZK for leadership proofs. Specifically,
parties have a Merkle tree of secret keys, the root of which
is hashed to create the corresponding public key. The Merkle
tree roots acts like a Zerocash coin secret key, and can be
used to spend coins. For leadership however, parties also must
prove knowledge of a path in the Merkle tree to a leaf at the
index of the slot they are claiming to lead. After a slot passes,
honest parties erase their preimages of this part of that path
in the tree. As the size of this tree is linear with the number
of slots, we allow parties to keep it small, by restricting its
size. Keys therefore are associated with their creating time,
by committing to this in the corresponding public key. While
this does mean keys can expire, we note parties can trivially
refresh them, and further will sketch in Section VIII that this
is a rare occurrence for practical parameters. We emphasize
that parties are able to spend and refresh keys, even when
expired.

While we could easily present Ouroboros Crypsinous using
non-committing encryption, known realizations of this prim-
itive are not efficient enough for this purpose in practice.
Instead, we take advantage of our protocols network assump-
tions, which include an upper bound on message delivery,
∆max. This allows us to utilize forward secure encryption
instead of non-committing encryption, under the assumption
that corruption is “delayed” by ∆max. This delay is modeled by
restricting adversarial access to the forward secure encryption
secret key at time τ to the key for time τ + ∆max.

III. THE MODEL

Following the recent line of works proving composable
security of blockchain ledgers [2], [1] we provide our protocol
and security proof in Canetti’s universal composition (UC)
framework [8]. In this section we discuss the main components
of the real world execution, including the hybrid function-
alities that the protocol uses. We discuss the ideal world,
and in particular the private transaction ledger functionality
in Section V. We assume that the reader is familiar with
simulation-based security and has basic knowledge of the UC
framework. We provide all the aspects of the execution model
from [2], [1] that are needed for our protocol and proof,
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but omit some of the low-level details and refer the more
interested reader to these works wherever appropriate. We note
that for obtaining a better abstraction of reality, some of our
hybrids are described as global (GUC) setups [9]. The main
difference of such setups from standard UC functionalities
is that the former are accessible by arbitrary protocols and,
therefore, allow the protocols to share their (the setups’) state.
The low-level details of the GUC framework—and the extra
points which differentiate it from UC—are not necessary for
understanding our protocols and proofs; we refer the interested
reader to [9] for these details. We will use sid as a session
identifier throughout the paper.

Protocol participants are represented as parties—formally
Interactive Turing Machine instances (ITIs)—in a multi-party
computation. We assume a central adversary A who corrupts
stakeholders and uses them to attack the protocol. The adver-
sary is adaptive, i.e., can corrupt additional stakeholders at
any point and depending on his current view of the protocol
execution. We cast our protocols in the partially synchronous
communication version of UC proposed in [2]: parties have
access to a global clock setup, denoted by GCLOCK, and
can communicate over a network of authenticated multicast
channels with a bounded delay ∆ denoted by F∆

N-MC. Every
honest party can send a message thought F∆

N-MC to all other
honest parties but the adversary can delay its delivery to any
honest party by a number of rounds of his choice but no
greater than ∆. Honest receivers cannot tell when a message
will arrive as they know neither when the message was
sent nor the delay ∆. However, as in [17], [1] our protocol
is implicitly aware of an overestimate ∆max of the actual
(unknown) network delay ∆. However, this ∆max is not used
in the message passing; instead the protocol proceeds in an
optimistic manner once messages are received (after at most
∆ rounds from sending), and ∆max is only used in the staking
procedure to determine the leader(s) of each slot.

Similarly to [2], [1], for UC realization in such a globally
synchronized setting, the target ideal functionality, i.e., the
ledger, needs to keep track of the number of activations that
an honest party gets—so that it can enforce in the ideal
world the same pace of the clock as in the real world.
This is achieved by describing the protocol so that it has an
(implicit) predictable behavior of clock interactions for any
given activation pattern—which the ideal functionality can
(and will) mimic. We refer to [2] for details.

We adopt the dynamic availability model implicit in [2]
which was fleshed out in [1]. We next sketch its main com-
ponents. All functionalities, protocols, and global setups have
a dynamic party set. I.e., they all include special instructions
allowing parties to register, deregister, and allowing the adver-
sary to learn the current set of registered parties. Additionally,
global setups allow any other setup (or functionality) to
register and deregister with them, and they also allow other
setups to learn their set of registered parties.

Utilizing the full dynamic availability model results in
separating the honest parties in the following categories: a)
Offline parties are honest parties that are deregistered from the

network functionality. b) (Fully) online parties are registered
with all their setups and ideal resources. c) (Online but) stalled
parties are registered with their local network functionality,
but are unregistered with at least one of the global setups.
Each of these (non-offline) subclasses is further split into
two subcategories along the lines of the classification of [2]:
those that have been in a non-offline state for more than
Delay rounds—where Delay is a ledger parameter—are
synchronized, whereas the remainder are de-synchronized. Our
protocol makes use of the following hybrid functionalities
from [1]. (The ideal world execution makes access to the
global setups presented below and the private ledger func-
tionality which is presented in Section V.)

The global clock functionality GCLOCK which keeps track
of the current (global) round and reports it to any party
that requests it. The round advances whenever all honest
(currently registered) parties and functionalities inform
GCLOCK that they are finished with their current round’s
actions.
The bounded-delay authenticated channels network
F∆

N-MC described above.
The genesis block generation and distribution functional-
ity FINIT, which captures the assumption that all parties
(old and new) agree on the first, so-called genesis block.
In fact, this functionality is slightly different from one
in [1] as the blocks in our work have a different structure
to ensure privacy. Concretely, In Ouroboros-Genesis this
block includes the keys, signatures, and original stake
distribution of the parties that are around at the beginning
of the protocol. Here, for each stakeholder registered at the
beginning of the protocol, FINIT records his initial coin
commitments in the genesis block; this block is distributed
to anyone who requests it in any future round. As in [1]
we assume without loss of generality that the global time
is τ = 0 in the genesis round. We refer to Appendix A
for a description of our new genesis block functionality.
A global random oracle GRO for abstracting hash function
queries. As typically in cryptographic proofs the queries
to hash function are modeled by assuming access to a
random oracle: Upon receiving a query (EVAL, sid, x)
from a registered party, if x has not been queried before,
a value y is chosen uniformly at random from {0, 1}κ
(for security parameter κ) and returned to the party (and
the mapping (x, y) is internally stored). If x has been
queried before, the corresponding y is returned. As in [1]
we capture this by a global random oracle (GRO), i.e., a
global setup that behaves as above.

To ensure privacy of transactions, we need to equip our
model with a couple of extra functionalities not present in
previous works. For instance, the (non-private) Ouroboros
protocol-line [13], [1] relies on verifiable random functions
and key-evolving signatures to ensure security of the lottery
which defines slot leaders and prevent double spending in the
presence of an adaptive adversary.

In this work we cannot use signatures to authenticate
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coins/transactions as we need to keep the spent amount and
the identities of the receiver private. For this reason we
introduce key-private forward secure encryption and non-
interactive zero-knowledge proofs (NIZKs). Our protocol will
be described as having access to hybrid-functionalities for
these primitives. These functionalities along with their imple-
mentation from a public-key infrastructure (PKI) or a common
reference string (CRS) and their security proofs are described
in Section IV. To our knowledge no definition of key-private
forward secure encryption or an implementation thereof has
been suggested. In fact, for reasons discussed below (see
Section IV-B) an implementation of this primitive against fully
adaptive adversaries might be impossible without additional
setup assumptions. Instead, here we make an assumption about
the (in)ability of the adversary to quickly read keys of newly
corrupted parties and prove the security of our protocols under
this assumption. Proving impossibility of the primitive against
a fully adaptive adversary (or providing a protocol for it) is
an interesting future direction.

Finally, our construction will make use of non-interactive
equivocal commitments and pseudo-random functions (PRFs).
Construction of both these primitives exists in the CRS model
under standard hardness assumption, notably the hardness of
the DDH (Decisional Diffie Hellman) problem.
Remark 1: (Assumptions on the environment/adversary as
setup-functionality wrappers.) The security statements about
implementation of ledgers are typically conditional. E.g., the
Bitcoin ledger is proved secure assuming the majority of the
system’s hashing power is honest, and the Ouroboros (Genesis)
ledger is implemented assuming the majority of the stake
is held by honest parties. These assumptions can be easily
described by explicitly restricting the class of environments
and adversaries, but this would sacrifice the universal compos-
ability of the statement. We follow the paradigm of [2] to cap-
ture these assumptions without compromising composability:
Instead of explicitly restricting the adversary and environment,
we introduce a functionality wrapper that wraps the (local
setup) functionalities that the protocol accesses and forces the
required assumptions on the adversary/environment. We refer
to [2] for a more detailed discussion. The wrapper used in
our security statements is left implicit here; a more explicit
statement can be found in the full version of this paper.

IV. TOOLS

In this section we describe the main tools used by Ouroboros
Crypsinous: non-interactive zero-knowledge (NIZKs), key-
private forward secure encryption, maliciously-unpredictable
PRFs (MUPRFs), and equivocal commitments. We describe
ideal functionalities capturing NIZK and key-private forward-
secure encryption, and refer to their UC implementations.
Further, we define the properties satisfied by MUPRFs and
equivocal commitments. Ouroboros Crypsinous will then be
described and proved secure assuming hybrid access to the
corresponding ideal functionalities and its security when these
functionalities are replaced by their implementations will
follow directly from the universal composition theorem.

A. Non-Interactive Zero Knowledge

We utilize the Non-Interactive Zero Knowledge function-
ality FNIZK, and protocol of [22]. This functionality allows
generating proofs π that a statement x is in a (fixed) NP
language L, with a witness w. We use the “weak” functionality
suggested, which permits an adversary to generate new proofs
for already proven statements.

We note that NIZK can be used for signature-like behavior
by embedding the messages that are to be signed in the
statements of simulation-extractable NIZKs, constructing a
signature of knowledge [18] (SoK). In particular, we note that
witnesses used to generate proofs in Ouroboros Crypsinous
will contain the party’s secret key, and the proved statement
commits to the party’s public key. As a result, the NIZK
used in Ouroboros Crypsinous have similar unforgeability
properties as standard signatures.

B. Key-private Forward-Secure Encryption

In order to construct Zerocash-like transactions, an encryp-
tion mechanism is necessary, for parties to send information
about newly created coins to their recipients. To preserve the
anonymity of Crypsinous transactions, key-privacy [3] is a
necessary property of this encryption. Furthermore, encryption
in the UC setting is required to be non-committing in order to
withstand adaptive corruptions, as the simulator must create
simulated ciphertexts, which it may later need to reveal the
message of.

While key-private, non-committing encryption would satisfy
the needs of our protocol, practical constructions are ineffi-
cient, especially considering parties must attempt to decrypt
each message, in case it is for them. Instead, we utilize a key-
private encryption with forward-security, and a time-sensitive
non-committing property. This weaker, time-sensitive, non-
committing property is sufficient to realize Ouroboros Crypsi-
nous. Informally, only messages addressed to a time window of
size ∆max into the future are protected. Nonetheless, even this
notion seems too strong to be implementable against a fully
adaptive adversary in a ∆-bounded-delay network. Intuitively,
the reason is the following: A common way to realize non-
interactive non-committing encryption via erasures is to have
parties update their keys once the message is received. The
ideal is that a message is encrypted at round τ so that it can
be decrypted with key sk ENC

τ , and sent over to the receiver.
Upon receiving it, the receiver can decrypt it (using sk ENC

τ ),
and immediately update the key to sk ENC

τ ′ for the next round
(and erase sk ENC

τ ). This way the link between the ciphertext
and the key is eliminated by the time the adversary corrupts the
receiver. However, this is not possible if the channel has any
delay, as in out setting, as this gives the adversary a window
of opportunity of size ∆, and bounded only by ∆max, to attack
during which the message is already being transmitted but has
not yet been received by the recipient. This makes erasures
useless in this window.

To bypass this, we make an assumption on the adversary’s
adaptiveness which, roughly, implies that the adversary cannot
immediately see the secret key of a newly corrupted party.
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Specifically, we assume that the adversary corrupting a party
with key sk ENC

τ at time τ does not receive sk ENC
τ , but rather

the key sk ENC
τ+∆max

, which this party would hold in time τ +
∆max, if it were allowed to properly update its key. We note
that this is a milder assumption than that of delayed party-
corruption which underlines the security of [21], [5]. Indeed,
in these works the adversary is forbidden from accessing the
entire state of a corrupted party for a certain number of rounds
after corruption; instead, here we only restrict his access to
the present keys, and we even give the adversary an outlook,
already upon corruption, of how the key will look in the near
future.

The straightforward way of enforcing the assumption would
be to make all our statements for a restricted class of ad-
versaries. However, for reasons similar to the discussion in
Remark 1 above, this would immediately imply that universal
composition no longer holds. Instead, we use the approach
from [2], [14] and introduce an ideal functionality which
captures this restriction/assumption. This functionality, de-
noted by FKEYMEM, stores keys upon request from parties, and
updates them every round using a one-way function Update;
when an honest party requests a key it has submitted in
the past, the functionality sends it the current key. However,
when the adversary asks for a key (on behalf of a corrupted
party) FKEYMEM first applies Update ∆max times, and returns
the updated key to the adversary. As an added bonus of
using the above functionality-based approach for restricting
the adversary, we ensure that the restriction is localized to
the encryption functionality; thus, if someone comes up with
an instantiation of the encryption functionality against a fully
adaptive adversary, Ouroboros Crypsinous immediately be-
come secure against such an adversary. The UC functionality
for key-private and forward-secure encryption, FFWENC, is
described in detail in Appendix A, and the accompanying
construction is described in Appendix F.

C. PRFs with unpredictability under malicious keys

Consider a PRF family {fk}k∈K such that fk : X → Y
for all k ∈ K. The usual PRF security requires that any
PPT distinguisher D with an oracle cannot tell the difference
between an oracle fk(·), for a randomly selected k and a
truly random function over X → Y . The definition can be
ported to the random oracle setting where both the function
fk as well as the distinguisher D have access to a random
oracle H(·). Unpredictability under malicious key generation,
is an additional property that, intuitively, suggests the function
does not have any “bad keys” that can eliminate the entropy
of the input, a concept introduced in [13]. In the random
oracle model, the property can be expressed as follows: for
any PPT A and x ∈ X,T ∈ N, the probability of the event
Pr[fk(x) < T |x 6∈ QH ] equals T/2κ where A(1κ) = k, and
QH is the set of queries of A to H . While such a property can
easily be satisfied by a random oracle, Ouroboros Crypsinous
invokes it within the NP language of a NIZK. Specifically,
we would need to not just assume the existence of a random
oracle, but that a specific polynomial function, such as well

known symmetric primitives, constitute a random oracle. We
instead choose a standard-model construction.

We propose the following construction. Let H : {0, 1}∗ →
〈g〉 be a function mapping to the cyclic group generated by g
that is selected according to an elliptic curve group based on
the “elligator” curves [6] that have the property that a uniform
element over 〈g〉 is indistinguishable from a random κ-bit
string. Then we define fk(m) 7→ H(m)k for k 6= 0 and we
show that it is a PRF with unpredictability under malicious
key generation from X to {0, 1}κ. Indeed observe first that
the following is a DDH triple 〈gk, H(m), H(m)k〉 over the
group 〈g〉. Thus, by the DDH assumption and the random
oracle model, we can substitute all queries to the PRF by
random group elements. Now observe that by the encoding
properties of the curve these elements can be substituted by
random strings over {0, 1}κ. Regarding the unpredictability
under malicious key generation observe that in the random
oracle model, Pr[H(x)k < T ] ≤

∑
y<T Pr[H(x)k = y] =

T Pr[H(x) = y1/k] ≤ T/2κ in the conditional space x 6∈ QH .

D. Equivocal Commitments

We make use of a standard non-interactive equivocal
commitment scheme, (Initcomm,Comm,DeComm, Înitcomm,

Ĉomm,Equiv), which is secure in the CRS model assuming
hardness of discrete logarithms (cf. [12]). This is used in the
simulation to open coin commitments to a specific party’s
public key, when this party is corrupted. For self-containment
we have included a high-level description, including some
notation used in our proofs in Appendix G.

V. THE PRIVATE LEDGER

We next provide the description of the private ledger
functionality that, as we prove, is implemented by Ouroboros
Crypsinous. The private ledger is based on previous UC def-
initions of distributed ledgers [2], [1]. Due to the complexity
of this functionality, and the fact that our modifications do
not alter the main component of it, namely the consensus
mechanism itself, we will only present how privacy affects the
definition of an ordinary ledger. For a full functionality, please
see the full version of this paper. To describe how privacy is
captured in the Crypsinous ledger, we first recall how sub-
mitted transactions are stored in the original—non-private—
ledger from [2], [1]: When a transaction tx is submitted, the
ledger creates—and stores in the buffer—an annotated version
of the transaction tx, denoted as BTX := (tx, txid, τL, Us),
which includes several useful metadata: txid is a unique
identifier for this transaction, τL is the clock value when the
transaction is received, and Us is the ID of the party that
submitted the transaction. Note that this metadata is used for
internal bookkeeping and is not necessarily included in the
state of the ledger when (and if) the transaction makes it there.

Privacy of Crypsinous is captured by the following modifi-
cations: First, an ID generating mechanism is added, by sub-
mitting GENERATE queries. This allows parties to create new
pseudonyms as desired. Second, transactions themselves are a
vector of sub-transactions, denoted tx , (stx1, stx2, . . . , stx`).
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Each sub-transaction consists of a recipient public key pkr,
and an arbitrary message x, that is stx , (pkr, x). In this
context, pkr is either a public key, generated by a party
with a GENERATE query, or the special symbol PUBLIC,
denoting the sub-transaction is publicly readable. Third, we
do not leak the entire annotated transaction to the adversary.
Instead, the adversary is shown a modified vector tx, with
sub-transactions addressed to honest parties replaced with
⊥. Concretely, we introduce blinding functions BlindTx and
Blind, described below, which hide parts of the ledger from
read requests. Finally, we parameterize the private ledger with
a general purpose leakage algorithm, Lkg, which the adversary
is permitted to query. An overview of the functionality can be
found in Figure 1.
• BlindTx takes as input an annotated transaction BTX =

(tx, txid, τL, Us), a set of parties P , and the set of
generated ids, ids. It returns a vector consisting only of
the components of the transaction that are readable by
some party Up ∈ P . An adversarial version of BlindTx,
BlindTxA , additionally returns the time of submission,
τL, and the submitter Us.3 We make use of the commonly
used higher-order function map, which applies a function
to a list element-wise, and also implicitly use currying,
i.e. a function applied to less arguments than it is defined
for should be considered a partial application of this
function.

BlindSTx(P, ids, (pk , stx)) , if pk = PUBLIC ∨
∃Up ∈ P : (Up, ID, pk) ∈ ids

then (pk , stx) else (⊥, |stx|)
BlindTx(P, ids, (tx, txid, ·, ·)) ,

(map(BlindSTx(P, ids), tx), txid)

BlindTxA(P, ids, (tx, txid, τL, Us)) ,
(map(BlindSTx(P, ids), tx), txid, τL, Us)

• Blind is similar to BlindTx but operates on states. While
this introduces subtleties regarding block representation,
it is sufficient to think of as replacing each transaction in
a state with its blinded version. For more detail, see the
full version of this paper.
BlindA is defined the same as Blind, but with calls to
BlindTx replaced with calls to BlindTxA .

In our system, we permit the leakage Lkglead (Figure 2),
which effectively simulates the protocols leadership election,
and leaks the winning party. Specifically, for each time τ ,
the adversary receives a set of parties that won the leadership
election. This set is selected by sampling a random coin for
each party, weighted by their stake using the same algorithm
as in Ouroboros Praos [13]. We note that while this leakage is
protocol-specific, it follows a general principle of leaking the
elected leaders in a protocol. Specifically, honest parties will
be selected by Lkglead with the probability of them winning a

3We note that if we assumed an anonymous broadcast, the submitter would
not be leaked.

GPL is parameterized by two main algorithms, Validate, and
Lkg, along with one main parameter: the initial coin distribution
C1 := {(U1, s1), . . . , (Un, sn)}. These parameters are all
publicly known. The functionality manages a fixed ledger state,
state, a buffer of unconfirmed transaction, buffer, the sequence
of generated IDs, ids, the sequence of honest inputs, ~ITH , and a
pointer ptp for each party Up, indicating its local state, i.e. the
length of the prefix of state, which is visible to Up. We write ~pt
to refer to a vector of all parties local state pointers We will
refer to the set of honest parties as H, and the set of all
registered parties as P .

Upon receiving any input I from any party Up or from the
adversary, retrieve the current time τL from GCLOCK, and record
the interaction in ~ITH . Specifically, if I 6= (SUBMIT, sid, tx), set
~ITH ← ~ITH ‖ (I, Up, τL).

Submitting transactions. If I = (SUBMIT, sid, tx): a) Choose a
unique transaction ID txid and set BTX := (tx, txid, τL, Up). b)
If Validate(BTX, state, buffer, ~pt,H, ids) = 1, then buffer :=
buffer ∪ {BTX}. c) Set
~ITH ← ~ITH ‖ ((SUBMIT, sid,BlindTxA(P \ H, ids, tx)), Up, τL).
d) Send (SUBMIT,BlindTxA(P \ H, ids,BTX)) to A.

Generating IDs. If I = (GENERATE, sid, tag): query the
adversary with (GENERATE, sid, Up, tag), denoting the response
id. Ensure the response is unique for tag and not equal to ⊥,
and record ids← ids ‖ (Up, tag, id). Return id.

Reading the state. If I = (READ, sid): set statep :=
state|min{ptp,|state|} and return (READ, sid,Blind({Up} , ids,
statep)) to the requestor. If the requestor is A then send
(BlindA(P \ H, ids, state),map(BlindTxA(P \ H), buffer),
Lkg(state, buffer, τL), ~ITH) to A.

Ledger maintainance. If I = (MAINTAIN-LEDGER, sid), the
ledger performs maintainance. The full consensus procedure is
not the focus of this paper, and is described in detail in [2], [1].
As a rough overview, it ensures the following properties: a)
Transactions in buffer are continuously re-validated as in
SUBMIT. b) Valid transactions in buffer will, within a fixed
amount of time get appended to state. c) The values of all state
pointers ptp will lag behind the most current state by at most a
fixed amount of time, k. d) state is append-only. Beyond these
constraints, the adversary is free to control the values state and
ptp.

Functionality GPL

Figure 1. The private ledger

leadership election in Ouroboros Crypsinous. This probability
is the same as in Ouroboros Genesis, and is the function φf of
their stake, where φf is the independent aggregation function
described in [13], [1].

In addition to this, we note Zerocash-style protocols will
allow an adaptively corrupting adversary to compute the serial
number of coins it sent to an honest party after corrupting
them. As the serial number is by necessity committing, the
simulator must know when such adversarially sent coins are
spent, to ensure the consistency of the simulation. For this
reason, we also leak the points adversarially sent coins are
spent.

In a preliminary step of our analysis we also utilize a leak-
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The Lkglead algorithm maintains a record of past leaks, Lτ for
each past time τ . This is to ensure the adversary is limited in
sampling from the leakage.

procedure Lkglead(state, buffer, τ )
if Lτ is recorded then return Lτ
Determine ep, the epoch for the time slot τ .
Determine τep, the time at which the stakeholder distribu-
tion for the epoch ep was frozen.
Let L← ∅;S ← ∅
for each party Up do

Determine the valid coins of Up in stateτep , that were
not adversarially generated.
Determine Up’s relative stake of these coins αUp .
With probability of φf (αUp), add Up to L.

end for
for each adversarially generated coin c do

if c was spent in state or buffer then
Let tx be the transaction it was spent in
Let i be the index of the coin in the transaction
Let S ← S ∪ {(tx, i)}

end if
end for
Record Lτ ← L, and return L, S

end procedure

Algorithm Lkglead for GPL

Figure 2. The leakage function for Ouroboros Crypsinous

age function leaking all information, Lkgid. This is effectively
the identity function, simply returning the parameters state,
buffer, and τ passed to it. We note that with this leakage the
private ledger effectively becomes a standard ledger from [2],
[1], with a stricter interface to the environment, as the simu-
lator still receives all information it would with the standard
ledger.

VI. THE OUROBOROS-CRYPSINOUS PROTOCOL

In this section we provide a detailed description of our
protocol Ouroboros-Crypsinous as a synchronous (G)UC pro-
tocol. The protocol has a similar – and in many parts identical
– structure as Ouroboros-Genesis [1], but differs considerably
in the leadership election, and processing of transactions. As
already discussed, the protocol assumes access to numerous
functionalities, including global setup, networks, encryption,
and NIZK.

A. Ideal-World Transactions

Before we delve into the protocol details, we note that
unlike many other ledger protocols, we assign meaning to
transactions, and this meaning, while more precisely de-
fined later on, is helpful to understand the high-level design.
Specifically, we consider ideal-world transactions starting with
(PUBLIC, TRANSFER) to be transfer transactions. While it
may appear sufficient to have ideal-world transfers appear as
something like “give 0.05 of Alice’s stake to Bob”, our real-
ization of transfers using a Zerocash-like [4] design introduces
some subtleties that need to be reflected in the ideal world.
Specifically, we will require parties to specify which coins they
are attempting to spend. Specifically, as in Zerocash, two coins
are burned, and two coins created, in any transfer. As a special

case, as our protocol has no other minting functionality, we
allow a zero-value coin to be burned in place of the second
coin. Formally, the transactions have the following form:
((PUBLIC, TRANSFER), (pkr, c4), (pks, c1, c2, c3)), where ci
are ID/value pairs. This can be interpreted as “transfer the
coins c1 and c2 to coins c3 and c4.” It is worth noting that
c3, while being a newly created coin, is not included in the
component addressed to pkr. It should be seen as a means
of returning “change” from a transaction, corresponding to its
real-world usage of Bitcoin and Zerocash transactions, and
should therefore also be addressed to the sending party. The
validation predicate ensures the total value is preserved across
the transfer, and that an ID is only spent by its generating party.
IDs must originate from the ledgers GENERATE interface,
otherwise they are treated as invalid.

In the real world, the design looks slightly different, follow-
ing the approach of Zerocash [4]. Specifically, parties locally
maintain, for each coin c, nonces, ρc, and commitment open-
ings, rc, to their coins. In order to spend a coin, they reveal
the deterministically derived serial number, snc, as well as
prove the existence of a valid commitment, cmc, somewhere
in a Merkle tree of coin commitments. Like Zerocash, newly
created coins are encrypted with the recipient party’s public
key, and the sending party is unable to spend them as it
would require the recipient’s private key to correctly generate
the coin’s serial number. One key difference is the design
of addresses, corresponding to the Ideal-world IDs. Parties
will generate a new coin public/secret key pair when given
a GENERATE query, and will update their secret key after
spending a coin with it.

To become a leader at a time τ , parties must prove knowl-
edge of a path in a local Merkle tree of secret keys sk COIN,
labeled with τ . This path is then erased by the party, to ensure
leadership proofs cannot be re-made for past slots. This Merkle
tree is created during key generation, with the coin’s public key
being derived from the Merkle tree’s root, and the time of key
generation. Each leaf is a PRF of the previous leaf, to reduce
storage costs. We employ standard space/time trade-offs by
keeping the top of the tree stored, and recomputing parts of
the bottom of the tree as needed. It is parameterized by the
number of leaves R, which we leave as a system parameter,
although we note it could also be defined per-user.

A users public key is derived from the root of the Merkle
tree, root, and the time it was created, τ . It is eligible for
leadership so long as there are still paths in the tree to prove
the existence of, after which the coin must be refreshed, by
spending it. We stress that this is a rare occurrence, as the
assumption of honest majority relies on coins not only being
held by honest parties, but also being eligible for leadership.

The protocol will take ideal transactions as an input, and
construct a corresponding Zerocash-style transaction in the
real world. This transaction is then broadcast as usual in
a blockchain protocol. On a READ request, the irrelevant
information is not returned, and only the information corre-
sponding to the original ideal-world transaction is returned
back to the requester. In addition to transfers, we note that
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other types of transaction are accepted in the ideal world.
We note that these are not validated, however, making the
real-world equivalent far simpler to construct. Specifically, we
encrypt each subtransaction with the public key of the party
it is addressed to. On a READ request, the ciphertexts that the
requesting party can decrypt are decrypted, and all others are
replaced with ⊥.

B. Protocol overview

The protocol Ouroboros-Crypsinous assumes as hybrids
a network F∆

N-MC, a non-interactive-zero-knowledge scheme
FNIZK, a forward-secure encryption scheme FFWENC, a global
clock GCLOCK, a global random oracle GRO, a non-interactive
equivocal commitment protocol, and a CRS used by the
commitment protocol, to supply the commitment public key,
FCRS.

The protocol execution proceeds in disjoint, consecutive
time intervals called slots. As in Ouroboros Genesis, slots
correspond directly to rounds given by GCLOCK. In each slot
sl, the parties execute a staking procedure to extend the
blockchain. This proceeds similarly to Ouroboros Genesis,
electing leaders to slots, with modifications to avoid revealing
more information about the leader than necessary. We note
that due to network-level attacks, the adversary is able to guess
with good probability which party is the leader. Further, due
to serial numbers being revealed, and being committing, an
the simulator must know when coins whose serial number the
adversary could guess after corruption – specifically those sent
by the adversary itself – were spent. This additional leakage
can be avoided if by a paranoid party, by it immediately
transferring coins to itself on receipt. Further, it is only an issue
for parties which may be corrupted. In a hypothetical setting
where the adversary could commit to not corrupting a party,
this party would no longer have leakage of this kind. Similar
to Ouroboros-Genesis, time is also divided into larger units,
called epochs, with the distribution of stake considered for
leadership purposes being frozen for each epoch.

We specify a concrete transaction system, based on Ze-
rocash [4]. Parties hold coins with inherent value, and a
fixed total value across the system (a restriction imposed for
simplifying the analysis. Adding block rewards would be a
straightforward extension). The Ouroboros Genesis leadership
election is performed on a per-coin basis, with each coin com-
peting separately. If any of a party’s coins win the election, the
party proceeds to generate a new block, extending their current
chain. The block itself is generated as in Ouroboros-Genesis,
although the validity of it is proved differently. Specifically,
FNIZK is used to produce a signature of knowledge of a coin
that won the leadership election during a given slot. This proof
is done in a Zerocash style, and involves renewing the coin
in question. Specifically, the Zerocash serial number of the
leading coin is revealed, and a new coin of the same value is
minted. We also refer to this proof, together with its auxiliary
information such as the spent serial number and newly created
coin commitment, as a leadership transaction.

We note that Ouroboros-Genesis requires the stakeholder
distribution to be frozen to prevent grinding attacks. In order
to allow a coin to be used for leadership proofs multiple times
in an epoch, we introduce a new resistance mechanism against
attacks of this type: The newly generated coins in leadership
transactions have their nonce deterministically derived from
the nonce of the old coin. The leadership test itself utilizes
only this nonce from the coin as a seed – it follows that the
leadership test for the derived coin is fixed along with the
randomness of the epoch.

Once a block is created, the party broadcasts the new chain,
extended with this block. Further, the party broadcasts the
leadership transaction separately, in order to ensure the newly
created coin will eventually be valid, even if the consensus
does not adopt the broadcast chain.

A chain proposed by any party might be adopted only if it
satisfies the following two conditions: (1) it is valid according
to a well defined validation procedure, and (2) the block
corresponding to each slot has a signature of knowledge from
a coin winning the corresponding slot.

To ensure the second property we need the implicit slot-
leader lottery to provide its winners (slot leaders) with a cer-
tificate/proof of slot-leadership. For this reason, we implement
the slot-leader election as follows: Each party Up checks, for
each of their coins c, whether or not it is a slot leader, by
locally evaluating a maliciously-unpredictable pseudo-random
function, as described in Section IV-C, with entropy supplied
by the epoch randomness ηep, by being evaluated at the slot
index sl and ηep, seeded with the “winning coin’s secret key”
rootc ‖ ρc. ηep is generated similarly to Ouroboros Genesis –
it is initially supplied through the CRS, then for subsequence
epochs, it is sampled in a maliciously unpredictable way from
“randomness contributions” ρ provided by slot leaders over
the course of the previous epoch.

Specifically, we will use the MUPRF construction of Sec-
tion IV-C, for a given group G. If the MUPRF output y is
below a certain threshold Tc—which depends on c’s stake—
then Up is an eligible slot leader; furthermore, he can generate
a signature of knowledge of a valid coin which satisfies these
conditions. In particular, each new block broadcast by a slot
leader contains a NIZK proof π, signing the rest of the
block content, with the knowledge of the nonce ρc, sk COIN

c,sl

for the slot sl the leadership transaction is for,, proving that
the nonce and secret key correspond to some unspent coin
commitment cmc. The leadership transaction also evolves the
coin that wins leadership – this is done in order to establish
adaptive security, and is done by updating the coin nonce used:
ρc′ = PRFevl

rootc(ρc). A new coin, in the same value, with this
updated – and, crucially, deterministic – nonce is created, and
committed in the transaction. In particular, parties erase ρc,
and only maintain ρc′ after the leadership proof is generated.

We note that, as in Ouroboros-Genesis, it is possible for
multiple, or no party to be a leader of any given slot. Our
protocol behaves identically to Genesis in this regard, and we
utilize the same chain selection rule in our protocol.

We next turn to the formal specification of the protocol
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Ouroboros-Crypsinous. We note that our party management
is identical to that of Ouroboros Genesis, and our protocol
description follows the same modular design as Ouroboros
Genesis. For brevity we will not re-state parts of the genesis
protocol which remain unmodified, and we will leave precise
UC specification of protocol components to Appendix C.

C. Real World Transactions

Before giving the formal specification we introduce some
necessary terminology and notation. Each party Up stores a lo-
cal blockchain CUp

loc —Up’s local view of the blockchain.4 Such
a local blockchain is a sequence of blocks Bi (i > 0) where
each B ∈ Cloc has the following format: B = (txlead, st);
where txlead = (LEAD, ~stxref, stxproof), and stxproof =
(cmc′ , snc, ep, sl, ρ, h, ptr, π). Here, st is the encoded data
of this block, h is the hash of the same data, sl and ep are the
slot and epoch the block is for, respectively, (cmc′ , rc′) =
Comm(pk COIN

c ‖ vc ‖ ρc′) is the commitment of the newly-
created coin. snc = PRFsn

rootc(ρc) is the serial number of the
coin c, which is revealed to demonstrate the coin has not been
spent. We define ρ = µrootc ‖ ρc , where µ is GRO evaluated at
NONCE ‖ ηep ‖ sl. ρ is the randomness contribution to the next
epoch’s randomness, ptr is the hash of the previous block,
and π is a NIZK proof of the statement LEAD (defined in
Appendix D). The component ~stxref consists of a (typically
empty) vector of reference leadership transactions. These are
processed before the leadership transaction itself is processed,
and serve to allow successive leadership proofs with the same
coin, even when the selected chain switches.

Ouroboros Crypsinous handles three kinds of transactions:
Leadership transactions, such as the above txlead, transfer
transactions txxfer, and general-purpose transactions. Each of
these is handled separately. We note the transfer transactions
and general-purpose transactions correspond directly to ideal-
world transactions with the same behavior. Leadership trans-
actions by contrast exist only in the real world.

General-purpose transactions in the ideal world consist
of a vector of subtransactions, addressed either to everyone
(PUBLIC), or a specific party. The corresponding real-world
transaction is a vector of the same subtransactions, which are
either directly the content of the ideal world transaction, in the
case of a transaction addressed to PUBLIC, or an encryption
of the content using FFWENC, to the party specified as the
recipient. Upon reading the state, parties attempt to decrypt
ciphertexts, and failing that, replace it with ⊥. To disambiguate
transactions, we prefix generic transactions with the label
GENERIC.

The implementation of transfer transaction is more in-
volved, as we not only want to guarantee their privacy,
but also their validity. To achieve this, we replace trans-
action which fall into the permissible ideal-world format
– which we recall, is txidealxfer = ((PUBLIC, TRANSFER),
(pkr, (id4, v4)), (pks, (id1, v1), (id2, v2), (id3, v3))) – with a

4For brevity, wherever clear from the context we omit the party ID from
the local chain notation, i.e., write Cloc instead of CUloc.

Zerocash-like construction. We define a real transfer transac-
tion to be: txrealxfer = (TRANSFER, stxproof, cr), where stxproof =
({cmc3

, cmc4
} , {snc1

, snc2
} , root, π), and cr is a FFWENC-

encryption for the slot the transaction was submitted in stxrcpt
= (ρc3 , rc3 , vc3) to pkr. Similar to leadership transactions,
(cmc3 , rc3) = Comm(pk COIN

c3
‖ vc3 ‖ ρc3), and (cmc4 , rc4) =

Comm(pk COIN
c4
‖ vc4

‖ ρc4
). snc1

and snc2
are revealed to

spend the coins c1 and c2 respectively, and π proves the
statement XFER (defined in Appendix D), specifically proving
the existence of cmc1 and cmc2 , in a Zerocash-like Merkle
tree of all valid coin commitments with the root root, as
well as various consistency properties, described in detail in
Appendix D. We note that the use of FFWENC implies that
parties will not be able to decrypt ciphertexts addressed to
them indefinitely, however they are still required to respond
with the corresponding ideal-world information to READ re-
quests. As a result, when a transfer transaction is first seen and
decrypted, the corresponding ideal world transaction is locally
stored. Further, parties maintain locally the information needed
to spend coins they own – specifically (rootc, ρc, rc, vc).

D. Interacting with the Ledger

At the core of the Ouroboros Crypsinous protocol is the
process that allows parties to maintain the ledger. There are
four types of processes that are triggered by four different
commands, provided that the party is already registered to all
its local and global functionalities.

The command (SUBMIT, sid, tx) is used for sending a
new transaction to the ledger. The party maps tx to a
corresponding txreal, which is stored in the parties local
transaction buffer, and multicast to the network.
The command (GENERATE, sid, tag) is used for creating
new addresses, which can be used by other parties to
transfer funds to this current party (if tag = COIN), and
for initially creating a parties public keys (if tag = ID).
The command (READ, sid) is used for the environment
to ask for a read of the current ledger state. On receipt,
the party maps each transaction ~st

dk
to its ideal-world

equivalent, and returns this ideal-world chain.
The command (MAINTAIN-LEDGER, sid) triggers the
main ledger update. A party receiving this command first
fetches from its network all information relevant for the
current round, then it uses the received information to
update its local info—i.e., asks the clock for the current
time τ , updates its epoch counter ep, its slot counter
sl, and its (local view of) stake distribution parameters,
accordingly; and finally it invokes the staking procedure
unless it has already done so in the current round.

The relevant sub-processes involved in handling these queries
are detailed in the following sections. After introducing
each of these basic ingredients, we conclude with a tech-
nical overview of the main ledger maintenance protocol
LedgerMaintenance, a detailed specification of the protocol
ReadState for answering requests to read the ledger’s state,
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and a detailed specification of the protocols SubmitXfer and
SubmitGeneric.

a) Party Initialization: A party that has been registered
with all its resources and setups becomes operational by
invoking the initialization protocol Initialization-Crypsinous
upon processing its first command. As a first step the party
receives its encryption key from FFWENC. It receives any
initial stake it may have as a single coin from FINIT. Sub-
sequently, protocol Initialization-Crypsinous proceeds as in
Ouroboros-Genesis, using the separate encryption, and coin
keys instead of VRF (verifiable random function) and KES
(key-evolving signature) keys. The precise description of the
initialization procedure is omitted, and can be found in the
full version of this paper.

b) The Staking Procedure: The next part of the ledger-
maintenance protocol is the staking procedure which is used
for the slot leader to compute and send the next block. A party
Up is an eligible slot leader for a particular slot sl in an epoch
ep if, one of Up’s coins, c, is both eligible for leadership in
ep, and a PRF-value depending on sl and the coin nonce ρc
and secret key rootc, is smaller than a threshold value Tc. We
discuss when a coin is considered eligible for leadership, and
how its threshold is determined.

A coin is eligible for leadership depending on when,
and how, its corresponding commitment entered the chain.
Specifically, if its corresponding commitment was created in a
transfer transaction, it is valid in a similar way as transactions
are considered for leadership in an epoch: If it is sufficiently
old by the time the epoch starts, it is taken as part of the
snapshot fixing the stake distribution for ep. Commitments
originating from leadership transactions are always immedi-
ately eligible for leadership, as their nonce and secret key are
deterministically derived. We note that it is possible, although
unusual, for the leadership transaction a coin originates from to
not be present in the chain the party is currently attempting to
extend. In this case, the coin is still eligible, as the originating
leadership transaction is added to ~stxref.

Each coin c’s value vc induces a relative stake for the coin,
αc. We use the same function φf (αc) as [1] to determine
the probability of a coin winning the leadership election, with
the corresponding threshold, Tc = ord(G)φf (αc), where G
is the target group of our MUPRFs. We note that due to the
independent aggregation property of φf , the probability of a
party winning the leadership election in Crypsinous and in
Genesis is initially the same, regardless of how it is split
between coins. One key difference, however, is that when
a coin is transferred in Crypsinous, it is no longer eligible
for leadership. As a direct consequence, any stake transferred
during an epoch must be considered adversarial for the given
epoch.

The technical description of the staking procedure can be
found in Appendix C-A. It evaluates two distinct MUPRFs for
each eligible coin. If the output of one of these is under the
target for some coin, the party is a slot leader, and continues
to create a new block B from their current transaction buffer.

Aside of the main contents, the party assembles a leadership
transaction and assigns it to the block. This transactions
includes a NIZK proof of leadership – specifically of the
statement LEAD – and acts as a signature of knowledge over
the block content, as well as the pointer to the previous block.
An updated blockchain Cloc containing the new block B is
finally multicast over the network.

From the staking procedure we construct the ledger main-
tenance protocol, which in addition to attempting to stake
on each block, monitors incoming transactions and chains,
decrypts ciphertexts where possible, updates the parties local
state by adding received coins, and records received messages,
and performs the chain selection of [1]. The full description
can be found in Appendix C-B

c) Submitting Transactions: Transactions submitted to the
Ouroboros Crypsinous protocols are, as previously discussed,
first mapped to corresponding real-world transactions, which
then get handled as standard ledger transactions by being
broadcast over a multicast network, and assembled into blocks.
Specifically, transfer transactions are mapped to Zerocash-like
transactions, where only the first coin received to a given
address it spent, and other transactions are mapped into en-
crypted components. The submitting procedure is specified in
detail in the full version of this paper. For generic transactions,
each subtransaction in the submitted transaction tx is mapped,
if it is addressed to a party Ur, to a ciphertext encrypted
with FFWENC, party Ur’s public key, and the current time τ .
The ciphertext-mapped transaction is then broadcast. The full
description of this is omitted here, and can be found in the
full version of this paper.

d) Reading the State: The last command related to the
interaction with the ledger is the read command (READ, sid)
that is used to read the current contents of the state. Note that
in the ideal world, the result of issuing such a command is for
the ledger to output a (long enough prefix) of the ideal-world
state of the ledger, with parts the party does not have access
to being hidden. As the format of real-world transactions
differs, we need to invert the map from real transactions to
the corresponding ideal transactions. For generic transactions,
this is a little tricky, as the use of forward-secure encryption
implies that the information associated with the transaction
in the ideal world is erased in the real world. To circumvent
this, parties maintain log, recording information necessary to
reconstruct the ideal-world representation of the transaction.
The full description of this reconstruction can be found in the
full version of this paper.

E. Transaction Validity

Transaction validity again differs in the real and ideal world,
as the transactions themselves differ.

a) Ideal World Validation: The ideal world validation pred-
icate validates only transfer transactions. It is parameterized
by the initial distribution of coins C1. It maintains, for each
ID, an ordered sequence of received values, the ID’s owner,
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and a flag marking whether the ID has already been used
for spending. For each transfer transaction validated, first it’s
format is enforced. Next, it asserts that v1 + v2 = v3 + v4. It
checks that the IDs of c1 and c2 have indeed received transfer
of value v1 and v2 respectively (and, if the IDs and value are
equal, have received at least two transfers of that value). As
a special case, if the ID of c2 is ⊥, and v2 = 0, it is always
valid.5 It is further checked that the coins the party is trying
to spend are “old enough”, specifically, they must be in the
parties local view of the ledger state. (We note the validation
predicate has access to the parties state pointer). If the sending
party is honest, we further restrict it to only spending coins
to which it owns the ID. Further, honest parties must address
stxchng to their own public key – i.e. the first value generated
by (GENERATE, sid, ID) by the party. If the sending party is
corrupted, it may spend the coins of other corrupted parties.
If other transactions in the buffer attempt to spend the same
coins, and the transaction is honest, it is also rejected – as
in this case the party is attempting to double spend and de-
anonymize themselves.

Finally, if the transaction is valid, a new receipt of a value
of v3 is recorded for c3, and respectively with v4, and c4. The
values spent are erased from the values lists of c1 and c2’s
IDs (with the exception of the id ⊥.

b) Real World Validation: The real world validation predi-
cate maintains three sets, the sets of coin commitments Cspend,
Clead for spending and leadership respectively, initialized to the
initial set of coin commitments C1, and the set of spent serial
numbers S, initialized to ∅. A chain is validated transaction by
transaction. Leadership transactions and transfer transactions
are both validated, other transactions are ignored. A leadership
transaction is valid iff all leadership transactions in ~stxref are
valid adopted leadership transactions, and the NIZK proof is
valid with respect to the Merkle root of the current tree, with
these adopted transaction inserted, as well as ηep, and it has a
greater slot number than the previous slot. Further, the serial
number sn revealed in it must not be in the current S. The root
used must either be the root of the predecessor block, or the
root of a past leadership transaction’s Merkle tree, with only
this transactions commitment added to the tree. Finally, ptr
must be the hash of the previous block, and h must be the hash
of the remaining transactions. After it is successfully validated,
S← S∪{sn}, Clead ← Clead∪{cm}, Cspend ← Cspend∪{cm}.

Transfer transactions are likewise validated by checking the
NIZK proof with respect to the public transaction component.
Further, it is checked that root was at some point the root of
Cspend, and that {sn1, sn2}∩S = ∅. If so, the effect is updat-
ing S ← S ∪ {sn1, sn2}, and Cspend ← Cspend ∪ {cm, cm3}.
Finally, at the start of an epoch, old enough spending coins are
allowed for leadership proofs: Clead

← Clead
∪ Cspend

t−k , where Cspend
t−k

is the set of spending coin commitments k slots before the
start of the epoch.

If a leadership transaction is included normally in a block,
or included in ~stxref (i.e. it is not this block’s leadership

5This permits parties with only one coin to spend it.

transaction, it is considered an adopted leadership transaction.
The validity criteria for these are different, requiring only
that the proof validity, the serial numbers are unspent, and
the Merkle root was a valid root for Clead at some point.
The effects of the transaction remain the same, although is
is no longer the leader of a block. A blocks transactions
are validated prior to the leadership transaction, as this may
depend on adopted leadership transactions. The Merkle tree
root of Clead of any adopted leadership transactions chain’s
is saved and preserved. These are valid for other leadership
transactions in the same epoch. Specifically, they are also valid
for the leadership transaction of the block it is contained in.

Generic transactions are valid if and only if they do not start
with the symbol (PUBLIC, TRANSFER).

VII. SECURITY ANALYSIS

We split our security analysis of Ouroboros-Crypsinous
into two parts: First, we show that Ouroboros-Crypsinous
realizes a “leaky” version of GPL – specifically, we show that
it realizes GPL with Lkg set to the identity function Lkgid; i.e.
the ledger leaks its entire content to the simulator, described
in Appendix B. We argue that the simulator S1 can simulate
any real-world attacks on Ouroboros-Crypsinous against a
leaky GPL. In the second stage, we instantiate Lkg to Lkglead,
in which only the leaders of a given slot are leaked. We argue
that S2 is secure against this, as it behaves indistinguishably
from S1. The smaller steps of this proof are stated here, and
argued in Appendix E.

Theorem 1. Ouroboros-Crypsinous UC-emulates GPL with
Lkg = Lkgid, under the DDH assumption, in the random
oracle model6.

We prove Theorem 1 by first establishing the similarity
of Ouroboros-Crypsinous from Ouroboros-Genesis [1],
showing that the usage of NIZKs, key-private forward-secure
encryption, and MUPRFs is equivalent to Genesis’ usage of
forward secure signatures, and VRFs. With this, we argue that
creating leadership transactions in Crypsinous is equivalent to
creating leadership proofs in Genesis, allowing us to leverage
the security analysis from Ouroboros Genesis [1]. We conclude
that Ouroboros-Crypsinous realizes a version of the stan-
dard, Genesis, ledger GLEDGER, with a different interface to the
environment. Specifically, we note that incoming transactions
are mapped to “real” transaction, and outgoing transactions
are mapped back to “ideal” transactions. We establish that
this mapping is reversed in such a way that the output
directly corresponds to that of the ideal private ledger, and
does not impact the validation predicate. We note that due to
the similarity of the standard ledger and the private ledger
with the total leakage, combined with the modified output

6We will be working under these assumptions throughout the rest of
the security analysis, and will typically leave them implicit. We will also
be assuming the binding (under discrete log, which is implied by DDH),
and hiding of our commitments, and the pseudo-randomness of our PRFs
implicitly.
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interface, Ouroboros-Crypsinous realizes the private ledger
with Lkg = Lkgid.

Lemma 1. The private ledger GPL with Lkg = Lkgid is
equivalent to the standard ledger GLEDGER from [1] with a
different interface.

Lemma 2. A party can make a leadership transaction in
Ouroboros-Crypsinous if and only if the party can make
a corresponding leadership proof in Ouroboros-Genesis.

Lemma 3. The mappings used in Ouroboros-Crypsinous
are consistent with the interface difference implicit in the GPL
to GLEDGER reduction.

Corollary 1. Ouroboros-Crypsinous UC-emulates GLEDGER,
with a different interface.

Theorem 2. Ouroboros-Crypsinous UC-emulates GPL with
Lkg = Lkglead under the DDH assumption, in the random
oracle model.

The leakage Lkglead leaks only the leader of any given slot.
We utilize a modified version of S1, which differs only in that
it creates simulated transaction instead of real transactions,
and reconstructs a corrupted party’s state when required. The
modified simulator, S2 is described in detail in Section B-B.
We prove that the simulated transactions are indistinguishable
from real transactions, and the reconstructed party state is
indistinguishable from a real party’s state. Therefore the sim-
ulator is indistinguishable from S1, although requiring less
leakage from the private ledger functionality. As a result, the
same security argument as for S1 holds with respect to GPL
with restricted leakage.

Lemma 4. Simulated transactions are indistinguishable from
real transactions.

Lemma 5. Corrupting an ideal-world party is indistinguish-
able from corrupting a real-world party.

VIII. PERFORMANCE ESTIMATION

Coin transfers are modeled after Zerocash’s [4] pour trans-
actions. This enables us to reuse much of the existing im-
plementation work invested on optimizing the performance
critical SNARK operations by the Zcash project, cf. [19].

Like Zerocash, our transfer transactions pour two old coins
into two new coins. In contrast, a leadership transaction only
updates a single coin. The additional costs incurred are two
evaluations of a PRF to compute ρc2 and sk COIN

c2
for updating

the coin in a deterministic manner, two evaluations of MUPRF,
and one range-proof to determine the winners of the leadership
election lottery. We approximate φf using a linear function
as in Bitcoin. The PRF is implemented using a SHA256
compression function. The MUPRF requires variable base
group exponentiations. As we require equivocal commitments,
we replace the SHA256 coin commitments of Zerocash that
require 83,712 constraints with the Pedersen commitments of
Sapling [19] which require only approximately 2,542 con-
straints. Purely for performance reasons, we also replace the

original SHA-256 Merkle tree of Zerocash with the Pedersen
hash-based tree used in Sapling.

In total, see Table II, the multiplication count of a leadership
SNARK relation is less than a transfer relation by about 42K
constraints. Furthermore, the number of constraints used by
our transfer relations is within a small margin of those used in
an equivalent Sapling transfer relation. While have not focused
on optimizing this process as Sapling has, by parallelizing the
NIZK proofs, we emphasize that even unoptimized, Ouroboros
Crypsinous would have a proving time only around double that
of Sapling.

Primitive Approx. constraints
SHA256 27,904
Exponentiation (variable base) 3,252 ([19], page 128)
Hidden range proof 256
Pedersen commitment 1,006 + 2.666 per bit7

Table I
NUMBER OF MULTIPLICATIVE CONSTRAINTS IN SNARK RELATIONS

Constraint count LXFER LLEAD

Check pk COIN
ci

2× 27, 904 27, 904
Check ρc2 , sk COIN

c2
2× 27, 904

Path for cmci 2× 43, 808 43, 808
(1 layer of 32) (1, 369) (1, 369)
Path for rootskCOIN

ci
34, 225

(1 layer of 24) (1, 369)
(leaf preimage) (1, 369)
Check snci 2× 27, 904 27, 904
Check cmci 4× 2, 542 2× 2, 542
Check v1 + v2 = v3 + v4 1
Ensure that v1 + v2 < 264 65
Check y, ρ 2× 3, 252
Check (approx.) y < ord(G)φf (v) 256
Total 209,466 201,493

Table II
NUMBER OF CONSTRAINTS PER SNARK STATEMENT

We note in passing that the forward-secure encryption
scheme is only needed for transfers and does not affect the
SNARK relations we need to prove which is dominating
performance. Likewise, the usage of a simulation secure NIZK
will increase proving time, and proof lengths. Nevertheless, in
both cases, the performance penalty is not intrinsic to the POS
setting and it would equally affect a POW-based protocol like
Zerocash if one wanted to make it simulation-secure in the
adaptive corruption setting.

A second performance concern may be the cost of main-
taining and updating Merkle trees of secret keys. There is a
trade-off here – larger trees are more effort to maintain and
use, while smaller ones may have all their paths depleted and
hence require a refresh in the sense of moving the funds to
a new coin. For a reasonable value of R = 224, this is of
little practical concern. Public keys are valid for 224 slots –
approximately five years – and employing standard space/time
trade-offs, key updates take under 10,000 hashes, with less
than 500kB storage requirement. The most expensive part of
the process, key generation, still takes less than a minute on
a modern CPU.

7https://github.com/zcash/zcash/issues/2634
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APPENDIX A
HYBRID WORLD FUNCTIONALITIES

The functionality FINIT is parameterized by the number of
initial stakeholders n and their respective stakes s1, . . . , sn.
FINIT interacts with stakeholders U1, . . . , Un as follows:
• In the first round, upon a request from some stakeholder Ui

of the form (claim, sid, Ui, pk ENC
i ), then FINIT stores the keys

tuple (Ui, pk
ENC
i ). It then samples sk COIN

ci the way
Ouroboros-Crypsinous does on GENERATE requests, ρci
randomly, computes pk COIN

ci
← PRFpk

rootskCOIN
ci

(0), and commits

(cmci , rci) = Comm(pk COIN
ci
‖ si ‖ ρci), and returns the

tuple (sk COIN
ci , ρci , rci , si). Once all parties have registered, it

samples and stores a random value η1
$← {0, 1}λ. It then

Functionality FINIT
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constructs a genesis block (C1, η1), where
C1 = {cmc1 , . . . , cmcn}.

• If this is not the first round then do the following:
– If any of the n initial stakeholders has not send a request

of the above form, i.e., a (keys, sid, Ui, pk ENC
i )-message,

to FINIT in the genesis round then FINIT outputs an error
and halts.

– Otherwise, if the currently received input is a request of
the form (genblock req, sid, Ui) from any (initial or not)
stakeholder U , FINIT sends (genblock, sid, (C1, η1)) to
U .

The (proof-malleable) non-interactive zero-knowledge
functionality FLNIZK allows proving of statements in an NP
language L.
Proving When receiving a message (prove, sid, x, w): If
(x,w) ∈ L, query A for a proof string π. Record (x, π), and
return π.
Proof Malleability When receiving a message (maul, sid, x, π)
from A: If for some π′, (x, π′) was recorded, record (x, π).
Proof Verification When receiving a message (verify, sid, x, π):
If (x, π) was not recorded, query A for a witness w. If
(x,w) ∈ L, record (x, π). Finally if (x, π) is recorded.

Functionality FLNIZK

FFWENC is parameterized by, a security parameter κ, a set of
parties P , and a maximum delay ∆max.
• Key Generation. Upon receiving a message (KeyGen, sid)

from a party Up, verify that Up ∈ P , and that this is the first
key generation. If so, send (KeyGen, sid, Up) to A, and
receive a value pkp in return. Return pkp to Up, and
initialize τp := 0 and add Up to the set of honest parties H.

• Encryption. Upon receiving a message
(Encrypt, sid, pk , τ,m) from some party Up:
– Check there exists a Uq ∈ P , where pkq = pk and
Uq ∈ H, and τ < τq + ∆max. If so, send
(Encrypt, sid, τ, |m|, Up) to A. Otherwise, send
(DummyEncrypt, sid, pk , τ,m,Up) to A.

– Receive a reply c from A, and send (ciphertext, c) to
Up. Further, if the conditions in the previous step were
satisfied, record the tuple (Uq,m, τ, c).

• Decryption. Upon receiving a message (Decrypt, sid, τ ′, c)
from party Up ∈ P:
– If τ ′ < τp, return ⊥.
– Else, if a tuple (Up,m, τ

′, c) was recorded, return m to
Up.

– Otherwise, send (Decrypt, sid, τp, c, Up) to A, receive a
reply m, and if m 6= ⊥, forward m to Up.

• Update. Upon receiving a message (Update, sid) from party
Up ∈ P:
1) Send (Update, sid, Up) to A.
2) Update τp ← τp + 1

• Corruptions. Upon corruption of a party Up ∈ P , remove
Up from H.

Functionality FFWENC

APPENDIX B
THE SIMULATOR

A. The Stage 1 Simulator

The first simulation stage of the Ouroboros Crypsinous
simulator is based closely on the Ouroboros Genesis [1]
simulator. The full simulator is omitted for brevity, and can
be found in the full version of this paper.

Our stage 1 simulator differs only to deal with the difference
between ideal and real transactions, in particular the following
two differences exist: First, the simulator, instead of forward-
ing submitted honest transactions directly to the network,
simulates executing the respective parties Submit operation.
Second, to ensure adversarial transaction are correctly included
in the ideal world, the simulator a) waits until the adversarial
transaction is confirmed in the real world, and then b) extracts
the transactions NIZK witness, uses this to construct the
corresponding ideal transaction, and submits and immediately
confirms it in the ideal world.

B. The Stage 2 Simulator

The second simulation stage restricts the leakage available
to the simulator to that described in Figure 2. Again, details are
left for the full version of the paper. The stage 2 simulator has
challenges in the following two domains: a) when simulating
the creation of transactions, it does not know their content,
unless addressed to the adversary. b) when a party is corrupted,
it must create the parties state after corruption. For both, the
simulator makes use of the fact that all primitives used in
transactions are themselves simulation secure. The simulator
can create entirely simulated transactions, and on corruption,
“open” them to a plausible value.

APPENDIX C
UC SPECIFICATION OF OUROBOROS CRYPSINOUS

Registration/Deregistration: Initially, as in Ouroboros-Genesis,
then call Initialization-Crypsinous(Up, sid, R).

Interacting with the Ledger (cf. Section VI-D):
Upon receiving a ledger-specific input I ∈ {(SUBMIT, . . .),
(READ, . . .), (MAINTAIN-LEDGER, . . .)} verify first that all
resources are available. If not all resources are available, then
ignore the input; else execute one of the following steps
depending on the input I:

If I = (SUBMIT, sid, (PUBLIC, TRANSFER) ‖ tx) then set
invoke the protocol SubmitXfer(tx, Cloc, log).
Else if I = (SUBMIT, sid, tx) then set invoke the protocol
SubmitGeneric(sid).
Else if I = (GENERATE, sid, tag) then
• If tag = COIN, sample sk COIN

τ
$← {0, 1}`PRF, and let

sk COIN
i+1 = PRFevl

skCOIN
i

(1), for i ∈ τ, . . . , τ +R. Let root
be the root of the Merkle tree over sk COIN

τ , . . . , sk COIN
τ+R,

and pk COIN ← PRFpk
root(τ). Insert the Merkle tree, and τ

into Cfree, and return pk COIN.
• If tag = ID, and this is the first query for ID, send

(KeyGen, sid) to FFWENC. Denote the response by

Protocol Ouroboros-Crypsinousk(Up, sid)
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pk ENC, record it, and then return it.
• Otherwise, return a uniformly random value in {0, 1}κ.

If I = (MAINTAIN-LEDGER, sid) then invoke protocol
LedgerMaintenance(Cloc,C, Up, sid, k, s, R, f, log); if
LedgerMaintenance halts then halt the protocol execution
(all future input is ignored).
If I = (READ, sid) then invoke protocol
ReadState(k, Cloc, Up, sid, R, f, log).

Handling external (protocol-unrelated) calls: as in
Ouroboros-Genesis.

A. The Staking Procedure

The following steps are executed in an
(MAINTAIN-LEDGER, sid)-interruptible manner:

1: for (pk COIN
c , ρc, rc, vc) ∈ C do

2: if c is not eligible for leadership then continue
3: Send (eval, sidRO, NONCE ‖ ηep ‖ sl)) to GRO, and denote

the response µρ.
4: Send (eval, sidRO, LEAD ‖ ηep ‖ sl)) to GRO, and denote

the response µy .
5: Lookup sk COIN

c,τ , rootc, and τc in Cfree corresponding to
pk COIN

c .
6: Let ρ← µ

rootc ‖ ρc
ρ ; y ← µ

rootc ‖ ρc
y

7: if y < ord(G)φf (vc) then
8: Compute st as in Ouroboros Genesis [1].
9: Set ptr ← H(head(Cloc)); h← H(st)

10: Set ρc′ ← PRFevl
rootc(ρc); snc ← PRFsn

rootc(ρc)
11: Set (cmc′ , rc′) = Comm(pk COIN

c ‖ vc ‖ ρc′).
12: Let ~stxref be, in order, the list of leadership transac-

tions made by Up not in Cloc.
13: Let root be the root of the Merkle tree Clead in Cloc,

after applying all transactions in ~stxref. Let path be
the path to cmc in the same Merkle tree.

14: Let pathc be the Merkle path to sk COIN
c,τ in the secret-

key Merkle tree.
15: Let x = (cmc′ , snc, ηep, sl, ρ, h, ptr, µρ, µy, root).
16: Let w = (path, rootc, pathc, τc, ρc, rc, vc, rc′).
17: Send (prove, sid,x,w) to FLLEAD

NIZK , and denote the
response π.

18: Let txlead = (LEAD, ~stxref, (cmc′ , snc, ep, sl, ρ, h,
ptr, π)).

19: Set B ← (txlead, st); Cloc ← Cloc ‖B.
20: Update c: C ← (C \ {(pk COIN

c , ρc, rc, vc)}) ∪
{(pk COIN

c , ρc′ , rc′ , vc)}
21: Send (MULTICAST, sid, txlead) to F tx

N-MC and proceed
from here upon next activation of this procedure.

22: Send (MULTICAST, sid, Cloc) to Fbc
N-MC and proceed

from here upon next activation of this procedure.
23: break

end if
end for

24: while A (CLOCK-UPDATE, sidC) has not been received
during the current round do

Give up activation. Upon next activation of this procedure,
proceed from here.

end while

Protocol StakingProcedure(k, Up, ep, sl, buffer, Cloc,C)

B. The Ledger Maintenance Procedure

The following steps are executed in an (MAINTAIN-LEDGER,
sid)-interruptible manner:

1: Execute FetchInformation to receive the newest messages
for this round; denote the output by (C1, . . . , CM ),
(tx1, . . . , txk), and read the flag WELCOME.

2: if WELCOME = 1 then proceed as in [1].
3: for transaction tx ∈ (tx1, . . . , txk) do
4: if tx is a transfer transaction then
5: Attempt to decrypt each new ciphertext c by sending

(Decrypt, sid, c) to FFWENC. Receive the response m.
6: if m = (pk COIN

c , ρc, rc, vc) ∧ cmc ∈ tx then
7: if @(sk COIN

c , τ) ∈ Cfree : PRFpk
rootc(τc) = pk COIN

c

8: then continue
9: Let Ccnd ← Ccnd ∪ {(pk COIN

c , ρc, rc, vc)}.
10: Let log← log ‖ (tx, RECEIVE, (pk COIN

c , vc)).
11: end if
12: else if tx is a generic transaction then
13: Attempt to decrypt each subtransaction ciphertext c

by sending (Decrypt, sid, c) to FFWENC. Receive the
response m.

14: if m 6= ⊥ then log← log ‖ (PLAINTEXT, c,m)
15: end if
16: end for
17: for (sk COIN

c , τc) ∈ Cfree do
18: if ∃sk COIN

c ∈ Ccnd whose transaction ∈ Cdkloc then
19: Move such candidates to C.
20: end if
21: Erase sk COIN

c,τ .
22: end for
23: Use the clock to update τ, ep← dτ/Re, and sl← τ .
24: Set buffer← buffer||(tx1, . . . , txk), ton ← τ ,
N ← {C1, . . . , and CM}

25: Invoke Protocol SelectChain(Cloc,N , k, s, R, f).
26: Update FFWENC as many times as necessary for its time to

be a least τ − k.
27: if twork < τ then proceed as in [1].

Protocol LedgerMaintenance(. . .)

APPENDIX D
NIZK STATEMENTS

Recall that we use two NIZK statements: LEAD, and XFER.
XFER is very close to the statement used in Zerocash [4],
while LEAD is a mixture between a Zerocash proof, and
an Ouroboros Praos [13] leadership proof. We define the
statements by their corresponding NP languages:
A tuple (x,w) ∈ LLEAD iff all of the following hold:

• x = (cmc2
, snc1

, η, sl, ρ, h, ptr, µρ, µy, root)
• w = (path, rootc, pathc, τc, ρc, rc1

, v, rc2
)

• pk COIN
c = PRFpk

rootc(τc)

• ρc2
= PRFevl

rootc(ρc1
)

• ∀i ∈ {1, 2} : DeComm(cmci , pk
COIN
c ‖ v ‖ ρci , rci) = >

• cmc1 is in root at path path
• pathc is a valid path to a leaf-preimage at position sl −
τc in the Merkle tree with root rootc.

• snc1
= PRFsn

rootc(ρc1
)

• y = µ
rootc ‖ ρc1
y ; ρ = µ

rootc ‖ ρc1
ρ

• y < ord(G)φf (v)

Note that x of LEAD contains values sl, h, ptr that seemingly
nothing is proven about. As a UC proof system is non-
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malleable, this makes them part of the signature of knowledge
message.
A tuple (x,w) ∈ LXFER iff all of the following hold:
• x = ({cmc3

, cmc4
} , {snc1

, snc2
} , root)

• w = ((rootc1
, τc1

, ρc1
, rc1

, v1, path1), (rootc2
, τc2

, ρc2
,

rc2 , v2, path2), (pk COIN
c3

, ρc3 , rc3 , v3), (pk COIN
c4

, ρc4 , rc4 ,
v4))

• ∀i ∈ {1, 2} : pk COIN
ci

= PRFpk
rootci

(τci
)

• ∀i ∈ {1..4} : DeComm(cmci
, pk COIN

ci
‖ vi ‖ ρci

, rci
) = >

• v1 + v2 = v3 + v4

• cmc1
is in root at path path1.

• cmc2
is in root at path path2, or v2 = 0 and rootc2

=
ρc2 = PRFzdrv

rootc1
(ρc1).

• ∀i ∈ {1, 2} : snci
= PRFsn

rootci
(ρci

)

APPENDIX E
SECURITY ANALYSIS (CONTINUED)

Proof of Lemma 1: To begin with, we note that if Lkg =
Lkgid, the simulator S1, described in detail in Section B-A
receives the same information in our private ledger GPL, as
it would in the standard ledger GLEDGER of [1]. Specifically, it
gets to see all transactions, in the buffer and the state in full, as
well as the sequence of honest inputs ~ITH (we note this hides
transactions, but these are revealed separately). We further
note that the interface of GPL to the environment is similar
to that of GLEDGER, specifically that it is a stricter interface –
it reveals less information to the environment, and restricts
the possible actions of the environment by forcing a format
on transactions. Together, it is clear to see that if a protocol
realizes GLEDGER, it can also realize the leaky GPL. We can
strengthen this result, and argue that it is even equivalent to
a ledger with a different validation predicate. Concretely, we
note the reduction from [1] still holds if a mapping between
GPL and GLEDGER transactions (as in Ouroboros-Crypsinous)
is used. In particular, we note that parties compute some
function f(tx) for each incoming (private ledger) transaction
tx, and use this similarly to a standard ledger transaction.
Likewise, on a read request, parties first get the underlying
sequence of transactions, and then apply an inverse mapping
f−1(Up, tx). We note that storing mapped transactions instead
of real transaction can be considered merely a matter of
representation, as long as the properties required of them are
preserved, whenever transactions are accessed. Specifically,
BlindTx({Up}) = f−1(Up) ◦ f , and the validity predicate on
the mapped transactions must behave the same as the validity
predicate on the original transactions. If this is the case, the
mapping is transparent to the ledger functionality itself, and
is therefore equivalent to having no mapping at all.

Proof of Lemma 2 (sketch): We note that the combination
of NIZKs with an erasable secret key, sk COIN

c , effectively
provide a signature of knowledge of the given secret key.
While the identity of the corresponding public key is never
revealed, we note that [1] does not make use of the identity
except to check it is the same as the party winning the lottery.
This property is guaranteed by a proof of LEAD as well.
Finally, we note that the erasure properties of sk COIN

c leaves

correspond to updating the FKES secret key after signing.
Likewise, we note that the usage of MUPRFs in NIZKs
provides the same verifiable randomness as VRFs did in [1],
again with the exception of not revealing the public key used
– which again is fine, as it is not required except to check that
it is the same identity as used in the signature.

Combined with the fact that LEAD verifies the same leader-
ship conditions as in the leadership proofs of [1], we note that
it is possible to create an Ouroboros Genesis leadership proof
for a party, if and only if it is possible to create an Ouroboros
Crypsinous leadership transactions for a corresponding coin.

Proof of Lemma 3 (sketch): We note the implicit map-
pings between GPL and GLEDGER transactions must be quasi-
bidirectional – converting back from ledger transactions into
GPL transactions should be equivalent to BlindTx. Further, the
mapped transactions should verify in the equivalent GLEDGER if
and only if the original transactions verify in GPL. For generic
transactions, this is given by the security of FFWENC. As the
mapped transactions have encryptions, they can be read only
by the intended recipients. The effect is simply that if parties
retain the readable components of a transaction, they obtain
exactly the blinded version of it. For transfer transactions,
things are more complex, as there is a stateful validation
involved.

We prove this by induction over a sequence of GPL transac-
tions, and the corresponding GLEDGER transactions. Specifically,
we maintains that in both worlds, a notion of coins exists,
which are kept and used by parties. We note that initially – and
by induction, at any time – a bijective relation exists between
these sets of coins, mapping each “ideal” GPL coin to a “real”
GLEDGER coin and visa-versa. We demonstrate that this invariant
is preserved across honest transfer and leadership transactions,
by the security properties of NIZKs and PRFs. Further, we
argue that the simulator S1 can construct “ideal” transactions
corresponding to any possible adversarial transaction, that also
preserve the invariant. We note that as the set of coins changes
iff a transaction is valid, this invariant directly implies the
equivalence of the validation predicates.

Proof of Theorem 1: The private ledger differs primarily
from the standard ledger in that it a) applies Blind to the
output of READ requests, b) leaks less information to the ad-
versary, and c) provides a mechanism for unique ID generation
(which are used internally). Difference a) follows directly from
Corollary 1. Further, we are considering an overly permissive
leakage predicate, Lkgid, which provides the adversary with
the same information it would receive from the standard ledger
satisfying b). Finally, we note that Ouroboros Crypsinous
allows ID generation, which are generated as PRF outputs of
a PRF seeded with a random, secret value, which will lead to
unique IDs for honest parties with overwhelming probability.
We conclude that Ouroboros-Crypsinous realizes GPL with
S1, under the leakage predicate Lkgid.

Proof of Lemma 4: We note there are four primitives
that are simulated in simulated transactions: Commitments,
NIZKs, FFWENC encryptions, and serial numbers. Due to the
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simulation security of NIZKs, and the equivocality of the
commitments, we know they are indistinguishable from real
NIZKs and commitments respectively. We note for FFWENC,
the simulator hands the adversary the same information about
the plaintext (namely, the length) as the functionality itself,
leaving the adversary with no information to distinguish. For
serial numbers, we note that if a coin is honestly gener-
ated, once its spent its nonce ρc is erased, and irretrievable.
Therefore, an adversary corrupting a party will be unable
to reconstruct the serial number, and it is indistinguishable
from the random, simulated, serial number. By contrast, if
the nonce is adversarially generated, the simulator is informed
which coin is being spent, and inserts the appropriate correct
serial number. As transactions consist of these primitives, and
the simulator knows the format and originating party of a
transaction, it can create a perfect simulated equivalent of the
transaction, and broadcast it on behalf of the same party.

Proof of Lemma 5 (sketch): We note that a party’s state
consists of the coin bookkeeping variables C, Cfree, and Ccnd,
log and the state from [1], consisting of the local chain Cloc,
and buffer. We note that while on corruption, the simulator
can extract ideal world coins from GPL, and map them to their
real-world equivalent. Likewise, even before corruption, the
simulator knows the local chains and buffer of all parties due
to its control of the network.

What remains to show is that the simulator can not just
construct a plausible honest party’s state, but that this state
is consistent with the ledger as is. In particular, we note
that it must be consistent with transactions the adversary has
observed so far. We note that this is handled by the erasure of
secret keys, the equivocality of commitments, and the forward-
security of FFWENC. In particular, we note that transactions
expose four types of values: PRFs of secret keys, in the form of
serial numbers, nonces, and the fact that the leadership target
was met, commitments to public keys, encryptions of coin
nonces, and NIZK proofs with secret keys in their witness.
We note the first is secure due to the erasure of the secret
keys after generating the PRF, the second is secure due to
our usage of equivocality, the third is secure by the forward-
security of FFWENC, and the last is secure due to the zero-
knowledge property of the NIZK.

Proof of Theorem 2: We conclude from Theorem 1,
Lemmas 4 and 5, and the fact that S1 and S2 differ only in
simulating transactions and corruption, that Theorem 2 holds.

APPENDIX F
KEY-PRIVATE FORWARD-SECURE ENCRYPTION

We extend the notion of forward-secure encryption (FSE)
with a notion of key-privacy, described in detail in the full
version of this paper. We note that, while this definition itself
is novel, existing schemes already satisfy it. In particular, [10]
constructs FSE from hierarchical identity-based encryption
(HIBE). Their scheme, paired with the anonymous HIBE
construction of [7] satisfies our requirements of key-privacy
as we will argue below.

For the argument of key-privacy, we note that [10]’s con-
struction of FSE from HIBE is straightforward, with the ci-
phertexts simply being the underlying HIBE scheme’s cipher-
texts. We note therefore, if some property holds about HIBE
ciphertexts, it holds about FSE ciphertexts in our construction.
The core argument of the anonymity of [7], arising from
Lemmas 8 and 9, is the indistinguishably of ciphertexts with
random group elements – and therefore their independence of
the encrypting identity. We note that the ciphertexts’ pseudo-
randomness implies a stronger notion than just anonymity –
the ciphertext also does not reveal any information about the
HIBE public key. In particular, as ciphertexts are indistinguish-
able, our enhanced security game given in the full version of
this paper is satisfied.

We note this construction is logarithmic to the number of
time slots. As this is bounded exponentially by the security
parameter κ, we note the use of this forward-secure encryption
has a linear increase in cost with respect to the security
parameter compared to standard encryption.

a) Lifting to a UC-Protocol: A key-private and forward-
secure encryption scheme, when used in the FKEYMEM-hybrid
model, can be used to realize FFWENC. The realization employs
the Fujisaki-Okamoto transform [15] to make the encryption
scheme CCA security. We leave the precise description, and
proof of this protocol to the full version of this paper,
however the general premise is to utilize FKEYMEM to ensure
the adversary never has access to secret keys of ciphertext
which cannot be simulated, and to leverage the key-privacy
to show that simulated ciphertexts are indistinguishable from
real ciphertexts.

APPENDIX G
COMMITMENT NOTATION

Specifically, we will assume the existence of six algorithms,
Initcomm, Comm, DeComm, Înitcomm, Ĉomm, and Equiv.
Initcomm takes the function of the CRS assumption, by gener-
ating a public key pk COMM which is given as an argument to
Comm and DeComm. In addition to satisfying the traditional
commitment properties, of binding, hiding, and correctness,
the scheme also satisfies equivocality. Înitcomm provides an
equivocation key in addition to pk COMM. This equivocation
key can be used to break the binding property – Ĉomm can
generate a commitment without a message, and Equiv can later
create a witness matching any message for this commitment.
We note that we do not require additional common properties,
such as extraction or non-malleability, as these are provided
by other components of Ouroboros Crypsinous’ design.

We write (cm, r) ← Comm(m) to create the commitment
cm for message r, and DeComm(cm,m, r) = > if the
decommitment to m and r verifies. Likewise, we write cm ←
Ĉomm(ek) for simulating a commitment with equivocation
key ek , and r ← Equiv(ek , cm,m) to equivocate, such that
DeComm(cm,m, r) = >. In all these, we leave the public
key pk COMM implicit, as is assumed to be globally known via
the CRS.
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